The Effects of Cold Compress and Warm Compress on β-Endorphin Levels, IL-6 and TNFα among Adolescent with Dysmenorrhea

By Mukhoirotin Mukhoirotin
The Effects of Cold Compress and Warm Compress on
β-Endorphin Levels, IL-6 and TNFα among Adolescent with
Dysmenorrhea

Mukhoirotin1, Kurniawati1, Diah Ayu Fatmawati1
1Faculty of Health Science, University of Pesantren Tinggi Darul Ulum Jombang

ABSTRACT

Pharmacological efforts to treat dysmenorrhoea are include cold compresses and warm compresses. The aim of this study was to determine the differences effect of cold compresses and warm compresses to β-Endorphin levels, IL-6 and TNFα among adolescents with dysmenorrhoea. The research was Post Test Only with Control Group. β endorphin, IL-6 and TNFα were measured by ELISA, then analyzed by Independent Sample T-Test. The average β level of Endorphin in cold compress group was 143.03 pg/ml in warm compress group was 171.43 pg/ml, the average IL6 level in cold compress group was 1352.60 pg/ml, in warm compress group was 961.14 pg/ml and the average TNFα level in cold compress group was 345.75 pg/ml, in warm compress group was 262.50 pg/ml. The results of Independent Sample T-Test showed that there was no difference in β levels of Endorphin IL-6 and TNFα in both of the warm and cold compresses group. Cold compress and warm compress can stimulate loose of Endorphin β levels and regulate uterine hypercontractility during menstrual pain. Cold compress and warm compress can be used as an alternative to treat dysmenorrhoea.

Keywords: Cold compress, Warm compress, β-Endorphin levels, IL-6 levels, TNFα levels

INTRODUCTION

Dysmenorrhoea is a painful sensation with cramps sensation in the lower abdomen and commonly followed by sweating, tachycardia, headache, nausea, vomiting, diarrhea, and back pain before or during menstruation(1-3). The intensity of menstrual pain was varies from mild, moderate and severe(4). Severe of dysmenorrhoea give affects physical, psychological and social consequences(5).

The prevalence of dysmenorrhoea in the world varies from 37% to 90.1%, in China there were 37%(6), 55.5%-70% in adolescents and young adults in Turkey(7-8), 60.9% of female medical students in King Abdulaziz University(9), 74.4% in teenage girls in Ghana(10), 74%-86.1% in Iran, 77.6% among University of Gondar Students, Northwestern Ethiopia(11), 90.1% among Jordanian University students(12). In Indonesia an estimated 55% of women in productive age were experienced menstrual pain(13). In East Java, the number of reproductive young women aged 10-24 is 56,598 and about 11565 (1.31%) of those experienced dysmenorrhoea and come to the obstetrics(14).

Factors that can increase the risk of dysmenorrhoea are include age and age of younger menarche, longer duration of menstruation, menstrual volume(15-17), low of BMI, smoking and alcoholism(16,18,19), low social support, family history of dysmenorrhoea, high caffeine consumption(20), depression, anxiety and stress(21). Primary dysmenorrhoea has a biochemical basis and due to prostaglandin loose during menstruation. During the luteal and menstrual phases, prostaglandin F2-alpha (PGF2-α) were secretion. Excessive release of PGF2-α will increase the amplitude and frequency of uterine contractions and causes vasospasm of the uterine arterioles, causing lower abdominal ischemia.

Corresponding Author:
Mukhoirotin
E-mail: mukhoirotin@flik.umpdu.ac.id
University of Pesantren Tinggi Darul Ulum Jombang, Indonesia
and cramps, and back pain. Psychiatric factors also play a role in the occurrence of primary dysmenorrhea. Stress can increase the levels of vasopressin and catecholamines and it will make vasconstrictions and ischemia in cells. Peripheral blood analysis in women with dysmenorrhea shows excessive synthesis and concentration of oxytocin, PGF2α, vasopressin, IL-6 and TNFα. Dysmenorrhea is a major cause of activities problem such as absent from work or school and decreased quality of life.

Pharmacological interventions for dysmenorrhea use nonsteroidal anti-inflammatory drugs (NSAIDs) and oral contraceptive. The side effects including dependence, diarrhea, abdominal pain, nausea, kidney and liver complications, sleep disorders, digestive disorders. The failure rate of pharmacological treatment is 20-25%. Non-pharmacological interventions include cold and warm compress. Cold compress is ice therapy that can reduce prostaglandins which strengthens pain sensation and other subcutaneous at the injury place by inhibiting the inflammatory process. This is because cold compress can reduce blood flow to a part and reduce bleeding edema which is it cause analgesic effects by slowing the speed of nerve delivery so the pain impulses will less reach to the brain. Warm compresses with hot jugs cause conduction, where there is transfer of heat from the bladder into the body and it giving dilation for blood vessels and decrease muscle tension so that dysmenorrhea pain will be reduced. Skin stimulation causes the release of endorphins, thus blocking the transmission of pain stimuli. The results of previous studies showed that Moxibustion can reduce the levels of PGF2α, oxytocin, vWF and increasing the levels of β-EP. The effect of cold and warm compress on β-Endorphin, IL-6 and TNFα has not been clearly known, so the researchers are interested in conducting the research about The Effects of Cold Compress and Warm Compress on β-Endorphin levels, IL-6 and TNFα among Adolescents with Dysmenorrhea.

MATERIALS AND METHOD

The design of this research was Pretest-Posttest. The population were all students at FIK-Unipdu Jombang who experienced dysmenorrhea. Sample size was 40, selected by purposive sampling, then divided into cold compress group (n=20) and warm compress group (n=20). The instrument of data collection were thermometer, a hot jug and ice bag. Numeric Rating Scale used to measure pain level. ELISA indirect method to measure the levels of β Endorphin, IL-6 and TNFα using the. Data were analyzed by T-Test.

FINDINGS

The intensity of dysmenorrhea before giving cold compress were mostly at moderate. However, in warm compresses group were more than half of participant at severe level. Intensity of dysmenorrhea after giving treatment in cold compresses group were mostly at mild, while in warm compresses group were mostly at moderate level. Homogeneity of variances test results showed that the intensity of dysmenorrhea before and after giving treatment in both of groups were not have a significant difference.

Table 1. The differences of β-Endorphin levels, IL-6 and TNFα after giving intervention

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cold compress Mean (SD)</th>
<th>Warm compress Mean (SD)</th>
<th>Mean Difference (95%-CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Endorphin</td>
<td>143.03(3.97)</td>
<td>171.43(2.59)</td>
<td>-28.40(-59.88~3.08)</td>
<td>0.074</td>
</tr>
<tr>
<td>IL-6</td>
<td>1352.60(3.57)</td>
<td>961.14(3.79)</td>
<td>39.46(-38.15~821.01)</td>
<td>0.070</td>
</tr>
<tr>
<td>TNFα</td>
<td>345.75(1.55)</td>
<td>262.50(6.14)</td>
<td>83.25(-42.85~209.35)</td>
<td>0.179</td>
</tr>
</tbody>
</table>
There were no have significant differences levels of β Endorphin, IL-6 and TNFα after giving treatment

β-endorphin levels after giving cold and warm compress were the techniques for cutaneous stimulation. Cutaneous stimulation is skin stimulation carried out to relieve pain, works by encouraging the release of endorphins, so it will block the transmission of pain stimuli. Changes in β-Endorphin levels can be explain the basis of Opiate Endogenous theory, where opiate receptors in the brain and spinal cord were determine the central nervous system to activate morphine substances called endorphins and enkephalin when pain is received. This endogenous opiate can be stimulated by skin stimulation and muscles. These opioid receptors are located on peripheral sensory nerve extremity.

Cold compress was given by using an ice bag filled with ice, compressed to the abdominal area for 5 minutes and a warm compress was given by using a bag filled with warm water at a temperature of 40-45 °C and compressed to the abdominal area for 20 minutes. The average β-endorphin level at cold compress group was 143.03 pg/ml, the warm compress group was 171.43 pg/ml. Giving cold and warm compresses can increase β-endorphin levels to relieve pain production. The higher of endorphins level make the level of pain at mild. Endorphins inhibit C fiber in pre and post synapses and Aβ fibers in the dorsal horn and activate the larger of Aβ (A-beta) sensory nerve fibers, thus blocking the pain signals when enter to spinal cord so the pain perception will decreases. After intervention, the intensity of dysmenorrhoea among respondents will decreased. This because of the release of β-endorphins levels that inhibit C fiber and activate Aβ sensory nerve fibers so it will inhibits the pain signals to spinal cord and decreased perception of pain. The result was in accordance with previous studies which showed that β-endorphin levels in primary dysmenorrhoea increased after moxibustion therapy. Moxibustion therapy is a warm moxa stimulation at Guanyuan, Shenque and Sanyinjiao acupuncture points, the treatment giving for 10-15 minutes a day during 7 days before menstruation in 3 menstrual cycles.

IL-6 and TNFα levels had no difference. In primary dysmenorrhoea, the level of genes expression of cytokine pro-inflammatory (IL1B, TNF, IL6 and IL8) at the first day of menstruation will significantly increases, IL-6 functions to increase oxytocin secretion at the first day of menstruation, where TNFα functions to increase prostaglandin and oxytocin at the first day of menstruation. Increased prostaglandins and oxytocin have an impact to excessive uterine contractions, decrease endometrial blood flow and cause pain during menstruation.

Cold compresses provide physiological effects to reduce the inflammatory response, blood flow and edema, local pain. Heat will stimulates the vascular reaction by increasing blood flow, resulting in delusions of prostaglandins, Bradykinin and histamine. Increasing blood flow also can increase oxygenation. Local heat will give the abdomen to increasing gastrointestinal motility and relaxation to the uterus. Local heat is as effective as NSAIDs. NSAIDs can reduce the accumulation of prostaglandins and reduce spasmic contractions caused by prostaglandins and inhibit the activity of COX-2 and COX-1 enzymes.

The results of previous studies showed that the giving of warm stimuli (moxibution) can regulate uterine hypercontractility during menstrual pain by set of the mediator pain level serum where occur the decreasing levels of PGE2 and oxytocin. The effect of moxibustion treatment works like electroacupuncture. Several studies have shown that electroacupuncture can reduce the expression of prostaglandin levels, peripheral blood lymphocytes among rat as the samples with primary dysmenorrhoea. T-cells are the main source of cytokine secretion (TNF, Interleukin, Interferons). Thus the cold compresses and warm compresses interventions can reduce pro-inflammatory cytokines IL-6 and TNFα.

CONCLUSION AND RECOMMENDATION

The results of this study showed that after giving warm and cold compresses in both group there were no differences in levels of β Endorphin, IL-6 and TNFα among adolescents with dysmenorrhoea. Cold compresses and warm compresses can be used as an alternative treatment to dysmenorrhoea.

Ethical Clearance: Ethics Committee of Nursing Faculty, Airlangga University

Conflict of Interest: No

REFERENCES

27. Yeh ML, Chen HH, So EC, Liu CF. A Study of Serum Maldialdehyde and Interleukin-6 Levels In Young Women With Dysmenorrhea In Taiwan. Life Sciences. 2004;75:669-673.

37. Wang YJ, Hsu CC, Yeh ML, Lin JG. Auricular Acupressure to Improve Menstrual Pain and Menstrual Distress and Heart Rate Variability for Primary Dysmenorrhea in Youth with Stress. Evid Based Complement Alternat Med. 2013:138537.

43. Smeltzer SC, Bare BG. Textbook of Medical Surgical Nursing. Philadelphia: Lippincott Williams & Wilkins; 2009.

The Effects of Cold Compress and Warm Compress on β-Endorphin Levels, IL-6 and TNFα among Adolescent with Dysmenorrhea

ORIGINALITY REPORT

10%

SIMILARITY INDEX

<p>	PRIMARY SOURCES
1 www.mejfm.com	20 words — 1%
citations.ist.psu.edu	14 words — 1%
journals.plos.org	13 words — 1%
www.science.gov	11 words — 1%
Jin-min Lee, Kye-ha Kim. "Effect of near-infrared rays on female menstrual pain in Korea", Nursing & Health Sciences, 2017	10 words — 1%
media.neliti.com	
<table>
<thead>
<tr>
<th></th>
<th>Internet</th>
<th>8 words — < 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>www.drugbank.ca</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>espace.library.uq.edu.au</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K. Müller. "In vitro cytokine production and phenotype expression by blood mononuclear cells from umbilical cords, children and adults", Pediatric Allergy and Immunology, 8/1996</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>academic.oup.com</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>dentistry.org</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>pjms.com.pk</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>www.nature.com</td>
<td></td>
</tr>
</tbody>
</table>